*Journal of Sound and Vibration* (1998) **217**(1), 191–195 *Article No.* sv981735

SV



# ANTISYMMETRIC MODES OF VIBRATIONS OF COMPOSITE, DOUBLY-CONNECTED MEMBRANES

C. A. ROSSIT, S. LA MALFA AND P. A. A. LAURA

Department of Engineering, Universidad Nacional del Sur and Institute of Applied Mechanics (CONICET), 8000—Bahía Blanca, Argentina

(Received 8 May 1998)

## 1. INTRODUCTION

Several recent publications deal with axisymmetric modes of transverse vibration of composite doubly-connected membranes [1, 2]. However, no studies seem to be available on antisymmetric modes of simply- and doubly-connected membranes [1–3].

The present study deals with the general formulation of the problem for the case of *m*-discontinuous variations of the density  $\rho_i$  (see Figure 1). Numerical results of the frequency coefficients are presented for m = 2 and several combinations of the geometric and mechanical parameters.



Figure 1. Vibrating system under study.

0022 - 460 X / 98 / 410191 + 05 \$30.00 / 0

#### table 1

| $ ho_2/ ho_1$                           | $arOmega_{11}$                          | $arOmega_{12}$ | $arOmega_{13}$ | $arOmega_{14}$ | $arOmega_{15}$ |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------|----------------|----------------|----------------|----------------|--|--|--|--|--|
| (a) $r_1/r_0 = 0.10, r_2/r_0 = 0.50$    |                                         |                |                |                |                |  |  |  |  |  |
| 0.10                                    | 4.52845                                 | 9.893          | 15.6809        | 21.3438        | 25.8914        |  |  |  |  |  |
| 0.50                                    | 4.2767                                  | 8.63894        | 12.3322        | 16.2242        | 20.5323        |  |  |  |  |  |
| 0.90                                    | 4.00791                                 | 7.53211        | 10.9727        | 14.5517        | 18.0364        |  |  |  |  |  |
| 1.50                                    | 3.62267                                 | 6.62817        | 9.78828        | 12.862         | 16.0586        |  |  |  |  |  |
| 2                                       | 3.34488                                 | 6.21329        | 8.99287        | 12.0664        | 14.7621        |  |  |  |  |  |
| 5                                       | 2.36923                                 | 4.99348        | 6.7597         | 9.04689        | 11.6432        |  |  |  |  |  |
| 10                                      | 1.7331                                  | 3.82894        | 5.74845        | 6.95202        | 8.85615        |  |  |  |  |  |
|                                         | (b) $r_1/r_0 = 0.20$ , $r_2/r_0 = 0.50$ |                |                |                |                |  |  |  |  |  |
| 0.10                                    | 4.67208                                 | 10.0453        | 15.8795        | 21.7857        | 27.5109        |  |  |  |  |  |
| 0.50                                    | 4.48687                                 | 9.16327        | 13.6008        | 17.5666        | 22.1416        |  |  |  |  |  |
| 0.90                                    | 4.28686                                 | 8.24847        | 12.1476        | 16.1210        | 20.1476        |  |  |  |  |  |
| 1.50                                    | 3.98186                                 | 7.32023        | 11.1106        | 14.4770        | 18.2633        |  |  |  |  |  |
| 2                                       | 3.74227                                 | 6.85956        | 10.4524        | 13.523         | 17.2495        |  |  |  |  |  |
| 5                                       | 2.76733                                 | 5.77031        | 7.81218        | 11.120         | 13.2118        |  |  |  |  |  |
| 10                                      | 2.05395                                 | 4.76427        | 6.49793        | 8.50204        | 11.2443        |  |  |  |  |  |
| (c) $r_1/r_0 = 0.30$ , $r_2/r_0 = 0.50$ |                                         |                |                |                |                |  |  |  |  |  |
| 0.10                                    | 4.94931                                 | 10.3363        | 16.1738        | 22.1651        | 28.1972        |  |  |  |  |  |
| 0.50                                    | 4.84631                                 | 9.83468        | 15.0099        | 19.8791        | 24.3902        |  |  |  |  |  |
| 0.90                                    | 4.73481                                 | 9.25069        | 13.7912        | 18·2672        | 22.8029        |  |  |  |  |  |
| 1.50                                    | 4.55532                                 | 8.4364         | 12.7177        | 17.0577        | 21.0270        |  |  |  |  |  |
| 2                                       | 4.39952                                 | 7.91428        | 12.2183        | 16.1897        | 19.9070        |  |  |  |  |  |
| 5                                       | 3.55881                                 | 6.59088        | 10.2176        | 13.0570        | 16.9390        |  |  |  |  |  |
| 10                                      | 2.74048                                 | 5.97725        | 7.9547         | 11.6227        | 13.4338        |  |  |  |  |  |

Frequency coefficients  $\Omega_{1i}$  for the configuration shown in Figure 1 (m = 2)

# 2. FORMULATION AND SOLUTION OF THE PROBLEM

For each concentric portion of the composite membrane the governing partial differential equation is

$$S\nabla^2 w_j(r,\,\theta,\,t) = \rho_j \frac{\partial^2 w_j}{\partial t^2}(r,\,\theta,\,t), \qquad j = 1,\,2,\ldots,\,m,\tag{1}$$

while the boundary and compatibility conditions are (j = 1, 2, ..., m - 1)

$$w_{1}(r_{0}, \theta, t) = 0, \qquad w_{j}(r_{j}, \theta, t) = w_{j+1}(r_{j}, \theta, t),$$
$$\frac{\partial w_{j}}{\partial r}(r_{j}, \theta, t) = \frac{\partial w_{j+1}}{\partial r}(r_{j}, \theta, t), \qquad w_{m}(r_{m}, \theta, t) = 0.$$
(2)

Making use of the classical method of separation of variables one writes

$$w(r, \theta, t) = W_j(r)\Theta(\theta)\tau(t)$$
(3)

and substituting in equation (1) one obtains

$$\tau(t) = C_1 e^{i\omega t}, \qquad \Theta(\theta) = C_2 e^{in\theta}, \qquad n = 1, 2, 3, \dots,$$
 (4a, b)

where  $\omega$  is the circular frequency, and

$$W_{j}(r) = A_{jn}J_{n}\left(\sqrt{\frac{\rho_{j}}{S}}\,\omega r\right) + B_{jn}Y_{n}\left(\sqrt{\frac{\rho_{j}}{S}}\,\omega r\right), \qquad j = 1, 2, \dots, m.$$
(4c)

In terms of  $W_i(r)$  the boundary and compatibility conditions become  $j = 1, 2, \ldots, m - 1$ 

$$W_{1}(r_{0}) = 0, \qquad W_{j}(r_{j}) = W_{j+1}(r_{j}),$$
  
$$\frac{dW_{j}}{dr}(r_{j}) = \frac{dW_{j+1}}{dr}(r_{j}), \qquad W_{m}(r_{m}) = 0.$$
 (5)

Conditions (5) yield a system of (2m) linear, homogeneous equations in the constants  $(A_{1n}, A_{2n} \dots A_{mn})$  and  $(B_{1n}, B_{2n} \dots B_{nm})$ . Finally, a determinantal equation in the natural frequencies of the antisymmetric modes is obtained from the non-triviality condition.

|           | TABLE 2      |                   |     |               |       |    |        |   |       |   |
|-----------|--------------|-------------------|-----|---------------|-------|----|--------|---|-------|---|
| Frequency | coefficients | $\Omega_{2i}$ for | the | configuration | shown | in | Figure | 1 | (m=2) | ) |

| $ ho_2/ ho_1$                         | $arOmega_{21}$                       | $arOmega_{ m 22}$ | $arOmega_{23}$ | $arOmega_{	ext{24}}$ | $arOmega_{25}$ |  |  |  |  |  |
|---------------------------------------|--------------------------------------|-------------------|----------------|----------------------|----------------|--|--|--|--|--|
| (a) $r_1/r_0 = 0.10, r_2/r_0 = 0.50$  |                                      |                   |                |                      |                |  |  |  |  |  |
| 0.10                                  | 5.54052                              | 10.5726           | 16.2519        | 22.0943              | 27.7710        |  |  |  |  |  |
| 0.50                                  | 5.38461                              | 9.73061           | 13.7423        | 17.1860              | 21.4306        |  |  |  |  |  |
| 0.90                                  | 5.19475                              | 8.68795           | 12.0003        | 15.4253              | 18.8217        |  |  |  |  |  |
| 1.50                                  | 4.8597                               | 7.58628           | 10.7184        | 13.5574              | 16.7347        |  |  |  |  |  |
| 2                                     | 4.56572                              | 7.06259           | 9.87195        | 12.6722              | 15.3787        |  |  |  |  |  |
| 5                                     | 3.30357                              | 5.75418           | 7.28680        | 7.28680 9.57191      |                |  |  |  |  |  |
| 10                                    | 2.41672                              | 4.42136           | 6.22874        | 7.31905              | 9.16972        |  |  |  |  |  |
|                                       | (b) $r_1/r_0 = 0.20, r_2/r_0 = 0.50$ |                   |                |                      |                |  |  |  |  |  |
| 0.10                                  | 5.56868                              | 10.6138           | 16.3043        | 22.1872              | 28.0501        |  |  |  |  |  |
| 0.50                                  | 5.43077                              | 9.89776           | 14.3733        | 18.1940              | 22.5375        |  |  |  |  |  |
| 0.90                                  | 5.26667                              | 9.01181           | 12.7460        | 16.5760              | 20.5303        |  |  |  |  |  |
| 1.50                                  | 4.9793                               | 7.96769           | 11.6104        | 14.8757              | 18.5670        |  |  |  |  |  |
| 2                                     | 4.72169                              | 7.43044           | 10.9344        | 13.8622              | 17.5444        |  |  |  |  |  |
| 5                                     | 3.51115                              | 6.26555           | 8.14823        | 11.3951              | 13.4251        |  |  |  |  |  |
| 10                                    | 2.5915                               | 5.15092           | 6.8394         | 8.69456              | 11.4191        |  |  |  |  |  |
| (c) $r_1/r_0 = 0.30, r_2/r_0 = 0.50,$ |                                      |                   |                |                      |                |  |  |  |  |  |
| 0.10                                  | 5.68936                              | 10.7813           | 16.4821        | 22.4088              | 28.4131        |  |  |  |  |  |
| 0.50                                  | 5.59972                              | 10.3214           | 15.3972        | 20.2460              | 24.6930        |  |  |  |  |  |
| 0.90                                  | 5.4977                               | 9.74982           | 14.1568        | 18.5491              | 23.0252        |  |  |  |  |  |
| 1.50                                  | 5.32186                              | 8.89487           | 13.0221        | 17.3066              | 21.2271        |  |  |  |  |  |
| 2                                     | 5.15785                              | 8.32904           | 12.5058        | 16.4282              | 20.0845        |  |  |  |  |  |
| 5                                     | 4.16322                              | 6.95487           | 10.4548        | 13.2503              | 17.0857        |  |  |  |  |  |
| 10                                    | 3.16996                              | 6.36034           | 8.13197        | 11.7953              | 13.5732        |  |  |  |  |  |

# table 3

| $ ho_2/ ho_1$                        | $arOmega_{31}$                       | $arOmega_{ m 32}$ | $arOmega_{ m 33}$ | $arOmega_{ m 34}$ | $arOmega_{35}$ |  |  |  |  |  |
|--------------------------------------|--------------------------------------|-------------------|-------------------|-------------------|----------------|--|--|--|--|--|
| (a) $r_1/r_0 = 0.10, r_2/r_0 = 0.50$ |                                      |                   |                   |                   |                |  |  |  |  |  |
| 0.10                                 | 6.62502                              | 11.3662           | 16.8613           | 22.6643           | 28.5526        |  |  |  |  |  |
| 0.50                                 | 6.53351                              | 10.8159           | 15.2544           | 18.7280           | 22.5755        |  |  |  |  |  |
| 0.90                                 | 6.41514                              | 9.98804           | 13.3462           | 16.6536           | 20.0153        |  |  |  |  |  |
| 1.50                                 | 6.17215                              | 8.77994           | 11.9328           | 14.6172           | 17.7573        |  |  |  |  |  |
| 2                                    | 5.90853                              | 8.1180            | 11.0816           | 13.5644           | 16.3659        |  |  |  |  |  |
| 5                                    | 4.36958                              | 6.73499           | 8.0599            | 10.3819           | 12.6462        |  |  |  |  |  |
| 10                                   | 3.18856                              | 5.20047           | 6.94103           | 7.88857           | 9.67249        |  |  |  |  |  |
|                                      | (b) $r_1/r_0 = 0.20, r_2/r_0 = 0.50$ |                   |                   |                   |                |  |  |  |  |  |
| 0.10                                 | 6.62886                              | 11.3741           | 16.8716           | 22.6801           | 28.5861        |  |  |  |  |  |
| 0.50                                 | 6.54038                              | 10.8498           | 15.4238           | 19.2739           | 23.2117        |  |  |  |  |  |
| 0.90                                 | 6.42742                              | 10.0823           | 13.6818           | 17.3173           | 21.1563        |  |  |  |  |  |
| 1.50                                 | 6.1995                               | 8.93583           | 12.3812           | 15.5326           | 19.0616        |  |  |  |  |  |
| 2                                    | 5.95446                              | 8.28035           | 11.6849           | 14.4222           | 18.0224        |  |  |  |  |  |
| 5                                    | 4.46584                              | 7.00521           | 8.68057           | 11.8409           | 13.7741        |  |  |  |  |  |
| 10                                   | 3.27235                              | 5.70926           | 7.39306           | 9.00634           | 11.6997        |  |  |  |  |  |
| (c) $r_1/r_0 = 0.30, r_2/r_0 = 0.50$ |                                      |                   |                   |                   |                |  |  |  |  |  |
| 0.10                                 | 6.66781                              | 11.4488           | 16.9574           | 22.7846           | 28.7404        |  |  |  |  |  |
| 0.50                                 | 6.59934                              | 11.0552           | 15.9978           | 20.8337           | 25.2087        |  |  |  |  |  |
| 0.90                                 | 6.51686                              | 10.5207           | 14.7483           | 19.0143           | 23.3935        |  |  |  |  |  |
| 1.50                                 | 6.36119                              | 9.62068           | 13.5136           | 17.7137           | 21.5586        |  |  |  |  |  |
| 2                                    | 6.19904                              | 8.98417           | 12.9686           | 16.8197           | 20.3776        |  |  |  |  |  |
| 5                                    | 4.98875                              | 7.5298            | 10.8368           | 13.5689           | 17.3269        |  |  |  |  |  |
| 10                                   | 3.74198                              | 6.94943           | 8.42828           | 12.0690           | 13.8120        |  |  |  |  |  |

Frequency coefficients  $\Omega_{3i}$  for the configuration shown in Figure 1 (m = 2)

In the case of a doubly-connected membrane of two materials of densities  $\rho_1$ , and  $\rho_2$  the determinantal equation corresponding to an *n*th degree of antisymmetry is

$$\begin{bmatrix} J_n(\Omega) & Y_n(\Omega) & 0 & 0 \\ J_n(R_1\Omega) & Y_n(R_1\Omega) & -J_n(R_1\rho\Omega) & -Y_n(R_1\rho\Omega) \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & J_n(R_2\rho\Omega) & Y_n(R_2\rho\Omega) \end{bmatrix} = 0,$$

where

$$m_{31} = \frac{J_{n-1}(R_1\Omega) - J_{n+1}(R_1\Omega)}{\rho}, \qquad m_{32} = \frac{Y_{n-1}(R_1\Omega) - Y_{n+1}(R_1\Omega)}{\rho},$$
$$m_{33} = J_{n+1}(R_1\rho\Omega) - J_{n-1}(R_1\rho\Omega), \qquad m_{34} = Y_{n+1}(R_1\rho\Omega) - Y_{n-1}(R_1\rho\Omega),$$

and

$$R_1 = r_1/r_0, \quad R_2 = r_2/r_0, \quad \rho = \sqrt{\rho_2/\rho_1}, \quad \Omega = \sqrt{\rho_1/S}\omega r_0.$$

## 3. NUMERICAL RESULTS

Tables 1, 2 and 3 depict values of  $\Omega_{ni} = \sqrt{\rho_1/S\omega_{ni}r_0}$ , for n = 1, 2 and 3, respectively.

The following geometric and mechanical combinations have been considered:  $r_1/r_0 = 0.1$ , 0.2 and 0.3 for  $r_2/r_0 = 0.5$  and  $\rho_2/\rho_1 = 0.10$ , 0.50, 0.90, 1.50, 2, 5 and 10.

The first five roots have been determined for each case (i = 1, 2...5). The calculation procedure has been greatly facilitated by the use of *Mathematica* [4].

### ACKNOWLEDGMENTS

The present study has been sponsored by Secretaría General de Ciencia y Technología of Universidad Nacional del Sur (Project Director: Professor R. E. Rossi) and by CONICET Research and Development Program.

#### REFERENCES

- 1. P. A. A. LAURA, D. V. BAMBILL and R. H. GUTIERREZ 1997 *Journal of Sound and Vibration* **205**, 692–697. A note on transverse vibrations of circular, annular composite membranes.
- 2. R. H. GUTIERREZ, P. A. A. LAURA, D. V. BAMBILL, V. A. JEDERLINIC and D. H. HODGES 1998 *Journal of Sound and Vibration*. Axisymmetric vibrations of solid circular and annular membranes with continuously varying density.
- 3. J. P. SPENCE and C. O. HORGAN 1983 *Journal of Sound and Vibration* **87**, 71–81. Bounds on natural frequencies of composite circular membranes: integral equations methods.
- 4. S. WOLFRAM 1991 *Mathematica* (Wolfram Research, Inc.). Reading, MA: Addison–Wesley Publishing Company, second edition.